COURSE COMPACT FOR CHE 326

Course

Course code: CHE 326 Course title: Chemical Reactions Engineering (3 units) Course status: Compulsory

Course Duration

Three (3) hours per week for 15 weeks (45hours)

Lecturer Data

Name: Dr. M.S. Olakunle Qualifications obtained: B.Sc.(Hons), PGD (Chem. Eng.), M.Eng., PhD Department: Chemical Engineering College: Science and Engineering

E-mail: <u>olakunle.michael@lmu.edu.ng</u> Office Location: Room A005 First College Building. Consultation Hours: Tuesday – Thursday, 10:00 – 12:00p.m.

Course Content:

Introduction: definition and reaction rates, variables affecting reaction rates; Classification of reactions; Homogeneous reactions (elementary and non-elementary reactions), molecularity and reaction order, rate constant, temperature dependency theories, activation energy, Constant-volume batch reactor (irreversible reactions of zero, 1st, 2nd and nth order; series and parallel reactions, Overall order from half-life data; reversible reactions of 1st and 2nd order); Variable-volume batch reactor (irreversible reactor (irreversible reactions of zero, 1st, 2nd and nth order), Analysis of total-pressure data; Homogeneous and autocatalytic reactions; Introduction to catalysis and catalyst deactivation

Course Description:

Chemical Reaction Engineering I is an introduction to chemical reaction engineering. It deals with definition and classification of reaction. It also deals with homogeneous systems and defines the parameters that influence its kinetics: temperature and concentration. Furthermore, methods of derivation of kinetic expressions using batch reactor experimental data are treated.

Course Justification:

Homogeneous reactions are common and continue to be very important in the chemical process industry. For purposes of design, kinetic models are usually very important. The course exposes students to typical reactions and parameters and methods considered in deriving their rate expressions.

Course objectives

At the end of this course, students should be able to:

- i. understand the concept of homogeneous reactions
- ii. know the parameters of the parameters that affects their kinetics
- iii. understand how to develop kinetic models for homogeneous reactions

Course Requirement:

S/N	Grading	Score (%)
1	Test	20
2	Assignment	10
3	Final Examination	70
	Total	100

Method of Grading- An example below

Course Delivery Strategies – Illustration below:

Lecture and Collaboration method complimented with tutorials will be adopted. In the tutorials, practice questions will be treated by the students guided by the course instructor. Students may sometimes be grouped for the tutorial classes and group assignment will also be given to students.

Week	Topic	Objectives	Description
1	Chemical Reaction and Classification	 At the end of this topic, students should be able to: Define the rate of chemical reaction. Apply the mole balance equations to a batch reactor, CSTR, PFR, and PBR. know what a chemical reaction is Understand the basis for the various ways in which reactions are classified 	<u>First hour</u> : General description of chemical reactions and their importance to the chemical process industry. <u>Second hour</u> : Types of chemical reactions Third Hour: Study Question: List and discuss the various ways in which chemical reactions are classified
2	Rate of Reaction of Homogeneous Reaction	At the end of this topic, students should be able to: Understand what is meant by reaction kinetics and the parameters that affect the kinetics of a homogeneous reaction	<u>First hour</u> : Reaction rate of various species from stoichiometric equation <u>Second hour</u> : Factors that affect the rate of reaction Third Hour: Study Question: Calculation of the rate of reaction of reactants and products and the significance of the negative (- ve) sign in the rate expression
3	Variables affecting reaction rates; molecularity and reaction order, rate constant	At the end of this topic, students should be able to: Understand the generalised form of rate law	First hour: Elementary and non- elementary reactionsSecond hour: The rate law and the significance of each term Third hour:StudyQuestion: Class assignment
4	Variable affecting reaction rate:	At the end of this topic, students should be able to:	First hour: The Arrhenius theory Second hour: Solution for

LECTURE CONTENT

	temperature	Understand the temperature	frequency factor and activation	
	dependency	dependent term and the	energy for typical problems	
	theories. activation	Arrhenius theory	Third Hour:	
	energy		Study Question:	
5	Constant-volume	At the end of this topic	First hour: Integral method of	
5	batch reactor:	students should be able to:	analysis	
	irreversible	Develop the kinetic	Second hour: Derivation of	
	reactions	expression for irreversible	kinetic parameters	
	reactions	reactions using the integral	Third hour:	
		method of analysis	Study Question: Find the kinetic	
		method of analysis	Study Question. Find the kinetic	
			parameters for a zero order	
			reaction, parallel reaction, series	
6	Constant-volume	At the end of this topic,	First hour: Derivation of kinetic	
	batch reactor:	students should be able to:	parameter	
	1rreversible	Develop the kinetic	Second hour: Derivation of	
	reactions	expression for irreversible	kinetic parameter	
	continued	reactions using the integral	<u>Third Hour:</u>	
		method of analysis	Study Question:	
7	Revision on topics covered so far			
8		Mid-Semester Continuous Ass	essment/Test	
9	Constant-volume	At the end of this topic,	<u>First hour</u> : 1 st order reversible	
	batch reactor:	students should be able to:	reactions	
	reversible reactions	Understand the use of the	<u>Second hour</u> : 2 nd order reversible	
		integral method of analysis	reactions	
		in generating kinetic	Third hour:	
		parameters for reversible	Study Question: Development of	
		reactions	kinetic parameters for typical	
			reactions	
10	Constant-volume	At the end of this topic,	First hour: Differential method	
	batch reactor:	students should be able to:	of analysis: zero and 1 st order	
	differential method	understand how to	reactions	
	of analysis	determine the values of	Second hour: 2 nd and nth order	
		kinetic parameters for	reactions	
		irreversible reactions using	Study Question: Determine	
		the differential method of	kinetics parameters given	
		analysis	experimental reactor data	
11	Autocatalytic	At the end of this topic,	First hour: Autocatalytic reaction	
	reactions	students should be able to:	rate description	
		Explain what autocatalytic	Second hour: solving for kinetic	
		reactions are	parameters	
		Illustrate Method of analysis	Third hour:	
		such reactions to obtain	Study Ouestion: show how the	
		kinetic parameters	model to be tested is developed	
12	Variable Volume	At the end of this topic,	First hour: significance of	
	Reactor	students should be able to:	fractional volume change (\Box_A)	
		Understand the significance	Second hour: theory of solving	
		of fractional volume change	for kinetic parameters	
		on complete conversion	Third hour:	
		Differential method of	Study Question: show the effect	

		analysis with variable	of stoichiometry on the value of
		volume reactors	X _A .
13	Variable Volume	At the end of this topic,	First hour: Integral method of
	Reactor	students should be able to:	analysis
	continued	Explain and apply the	Second hour: Integral method of
		Integral method of analysis	analysis
		with variable volume	Third hour:
		reactors	Study Question: Tutorial:
			solution of typical problems
14	General Revision	At the end of this topic,	First Hour:
		students should be able to:	Second Hour:
			Third Hour:
			Study Question:
15	Examination	To examine the students on all that has been taught during the	
		se	mester.

- Reading List Books and materials students can read:
 1. Chemical Reaction Engineering, 3rd Edition, Octave Levenspiel
 2. Elements of Chemical Reaction Engineering, 3rd Edition, H. Scott Fogler